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Abstract. We deari te  a new algebraic technique for enumerating self-avoiding waks 
on the miangular lattice. The mmputational mmplexity of enumerating walks of N 
steps is of order 3Nlr times a polynomial in N, and so the approach is greatly superior 
to direct munting techniques. We have enumerated walks of up io 39 steps. As a 
consequence, we are able to accurately &mate the mitical p in t ,  critical exponent, and 
critical amplitude. 

1. Introduction 

Over the years, the enumeration of square lattice self-avoiding walks has become a 
benchmark, first for computer performance, and more recently for algorithm design. 
In the early 19703, Sykes er ai (1972) obtained 24 terms of the series by using the chain 
counting theorem. Direct enumeration is probably somewhat faster, but the graphs 
enumerated for the chain counting theorem (figure-eights, theta graphs, dumbells 
and polygons) were useful for other problems in the theory of phase transitions, most 
notably the king model. Guttmann (1987) extended the series by three terms, using 
direct enumeration, and Guttmann and Wang (1991) using a dimerization algorithm 
obtained two further terms. Subsequently McDonald et a1 (1992) obtained a further 
term, using an extension of dimerization to trimerization. Late in 1991, Masand ef a1 
(1992) used a large supercomputer, a CM-2 containing 65536 processors, to extend 
the series to 34 terms, running for - 100 hours. All these advances came about 
because of improvements in computer technoloa (in large part), with relatively small 
improvements brought about by algorithm design. (Dimerization or trimerization 
saves a factor of around 2 or 3, but does not ameliorate the exponential growth rate 
of computer time.) 

The finite-lattice method plus transfer matrices described here allows 35 terms to 
be obtained on a work station (an IBM 6000/530 with 256MB of memory) in less 
time than the 65536 processor CM-2 took to obtain 34 terms. Because of memory 
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requirements, it was necessary to move to a larger machine (an IBM 3090/400 with 
S00MB memory and 2GB of backing storage) to go from 35 to 39 steps This 
computer would be capable of extending the series to 43 terms. However that 
calculation might take up to a month of CPU time, and so has not been pursued. This 
improvement however is due to the exponential improvement in algorithm design, 
rather than evolution of computer speed. This is discussed in more detail below. 

The method used is based on the method which Enting and Guttmann have used 
extensively over the past twelve years to enumerate self-avoiding rings on a square 
lattice, but is significantly more complicated due to the requirement for a second 
stage of processing. 

In a series of papers we have reported some significant improvements in the 
enumeration of self-avoiding rings on the square lattice extending the known series 
(Sykes et d 1972) from 26 steps to 38 steps (Enting 1980), 46 steps (Enting and 
Guttmann 1985) and 56 steps (Guttmann and Enting 1988). The extension hom 38 
steps to 56 steps reflects our use of increasingly powerful computing systems and in 
particular the use of increasingly large amounts of physical and virtual memory. Only 
minor changes to our programs have been made, primarily to ‘tune’ the procedure 
to make efficient use of particular computer architectures. We have also generalized 
our method to enumerate caliper moments of self-avoiding rings on the square lattice 
(Guttmann and Enting 1988) and also to enumerate self-avoiding rings on the L and 
Manhattan lattices (Enting and Guttmann 1985) and the honeycomb lattice (Enting 
and Guttmann 1989). Most recently we have extended the enumeration of triangular 
lattice polygons to 25 steps (as reported by Enting and Guttmann 1990) and then to 
35 steps (Enting and Guttmann 1992). 

W i l e  our techniques have been highly efficient for enumerating self-avoiding rings 
they are less suitable for enumerating self-avoiding walks. The difficulty is that walks 
can span a larger lattice than rings because they are not forced to return. A walk of 
L steps can span a distance L while a ring of L steps can only span a distance of 
up to L/2 For walks mnstrained by a surface our polygon enumeration techniques 
could be generalized in analogy with our calculation of surface susceptibilities for the 
square lattice (Enting and Guttmann 1980). 

The present paper presents an algebraic technique for enumerating self-avoiding 
walks on a rectangular lattice. The basic quantity that we consider is C,,, the number 
of walks from a given origin with n steps in the hz directions and m steps in the f y  
directions. We consider segments of walks that double back in the ydirection and 
which can therefore be counted efficiently by transfer matrix techniques. The general 
enumeration can be expressed as a combination of such irreducible contributions. We 
further improve the efficiency of the procedure by restricting the range of the index 
n to n < k and reconstruct C,, for m + n < 2k + 1 by using the symmetly relation 
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The layout of the remainder of this paper is as follows. Section 2 describes the 
way in which the generating function for self-avoiding walks can be constructed 
from irreducible contributions. Section 3 shows the way in which these irreducible 
contributions can be constructed from generating functions for walks on strips that 
can be determined by algebraic techniques Section 4 describes the algorithms 
for determining the requisite generating functions and analyses the computational 
complexity of the procedure. Section 5 describes our analysis of the singularity 
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Figure L Schematic representation of pmjections of self-avoiding walks onto the y-axis. 

R 

Qure Z The live lypes of irreducible mmponent from which self.avoiding walks are 
mnstmcled. 

structure of the generating function for self-avoiding walks based on the 39 terms 
that we have obtained. 

2. Generating functions for self-avoiding walks 

The generating function for self-avoiding walks on the rectangular lattice is 

m 

C ( u , w ) =  cmnwmun. 
m,n=U 

The enumeration of the coefficients C,, is restricted to hite-order in m and/or n 
and we generally truncate the double series at m + n < J .  The obvious summation 
then gives us the number of walks of up to J steps on the square lattice. 
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Our enumeration procedure is based on considering projections of walks onto 
the y-axis to produce the tYpe of diagrams shown in figure 1. We refer to segments 
of walks as irreducible if the projection of that segment onto the y-axis has two or 
more y-bonds in each position. We will also classify irreducible segments by the 
number of y-bonds that they span. At this point we need to refine the terminoloiy 
and distinguish between walks which are directed graphs and chains which are not 
directed. Our aim is to enumerate walks while the transfer matrix techniques generally 
enumerate chains. The decomposition of walks into irreducible components makes 
use of both chains and walks. 

Figure 2 shows the five distinct lypes of irreducible component that we need to 
consider. 

P(u, w )  is the generating function for walks that have no y-bonds, thus 

qU, w )  = 1 + 2u + 2Uz + 2U3 + . . . = (1 + u)/(i - .). (2.2) 

Q(u ,  w )  is the generating function for chains that are irreducible and for which 
neither end-point lies at an extrema1 y-coordinate. We also consider subdividing such 
cases according to m, the number of y-bonds spanned by the projection and define 
&,(U, w )  accordingly. The two pertinent results are 

m 

and 

Q,(u ,w)  = O(w2"). (2.4) 

Qu E Q1 E 0. (2.5) 

Note that from the definition 

R ( u , w )  is the generating function for irreducible chains with both endpoints 
having the maximal y-coordinate. Again we subdivide these chains according to the 
number of y-bonds spanned and put 

m 

and arbitrarily define 

&) f 0. 

S(u, w )  is the generating function for irreducible chains that have precisely one 
end having the maximal y-coordinate. Again 
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and from the definition 

S” SI = 0. 

Finally T( U, w) is the generating function for irreducible chains in which the two 
ends have maximal and minimal ycoordinates. We arbitrarily define 

To 5 0 (2.12) 

so that 
m 

(2.13) 

T,(U,W) = O(Wh”). (214) 

When constructing the generating functions for walks we combine the irreducible 
components represented by P, Q, R, S and T by linking them with single y-bonds. 
These each contribute a factor of w to the generating function C(U, U). flvo single 
y-bonds that are adjacent in the projection are actually connected by a type P 
irreducible component. A chain whose projection is k consecutive single y-bonds will 
have a factor of P at each internal point. Note that the walk generating function P is 
required because each distinct direction along the z-axis will generate a distinct chain 
when combined with y-bonds. If we sum these contributions we can consider linking 
components of types R , S  and T with chains of one or more y-bonds connecting 
type P walks. The generating function for such chains is 

U ( U ,  w )  = w + WPW + wPwPw + . . 
= w / ( l - w P ( . , w ) )  

In the Same way we can regard the overall chain as consisting of end segments P, 
R or S connected by combinations of ‘reducible’ parts with generating function U 
and irreducible parts with generating function T. The generating function for chains 
connecting irreducible end segments is thus 

V ( u , w )  = U +  U T U  + U T U T U  + .  , 
= U / ( 1 -  T U )  

= w/(l  - w(T + P ) ) .  

It is now possible to express the self-avoiding walk generating function as 

(2.16) 

C(u, w )  = P(u,w)  + 2[Q(u, w )  + 2R(u, tu) + 2S(u, w )  + T(u, w)] 
+21.’(u,w)[P(u,w)+2R(v,w)+ S ( % W ) +  T(u,w)12. (2.17) 

?he structure of expression (2.17) shows that to obtain an expansion in powers of 
w, it is necessaly to obtain Q, R, S, and T to the requisite order. Jf the irreducible 
generating functions Q,, R,, S, and T, are known for m < M then C( U, w )  will 
be correct to wZMtl (the first incorrect term arising from the absences of QMtl and 
RMtl). The use of the symmetry relations (1.1) will give C,, for m+ n 6 4M +3. 
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3. Combining generating functions for chains on strips 

The transfer matrix techniques described in the next section produce generating 
functions for sets of walks confined to strips whose y-coordinates are bounded. 
Subject to these constraints, all chains are counted, not merely irreducible 
components. Thus there is a need to relate unrestricted generating functions to 
the restricted generating functions for irreducible components. In our previous 
enumerations of self-avoiding rings only linear combinations of different classes 
of graph were involved and so the restricted generating functions were linear 
combinations of unrestricted generating functions. The present formalism is more 
complicated because nonlinear relations are involved. We begin by considering 
Th(u, w), the generating function for chains whose y-coordinates span M bonds 
and which have one end at each yextremum, that is, P, is the generating function 
for bridges. The sum Over M is denoted T*(u, w). By considering the appropriate 
subset of terms from (2.17) we have 

A R Conway et al 

T*(u,w) = T(u ,w)  + ( P ( u , w )  4- T ( U , W ) ) * V ( U , W ) .  ( 3 4  

While this equation is formally correct, it is unsuitable for relating T* to T 
because of the fact that while T, is of order w3m, T; is of order wm. Thus to 
obtain T correct to w K  would require the calculation of T; for m < IC. This 
difficulty is avoided by introducing an extra variable z whose power corresponds to 
the width of the segment under consideration. We refer to functions including z 
as 'extended generating functions'. We define the extended generating function for 
irreducible bridges as 

m 

X ( u , w , z )  = P ( u , w )  t P T , ( u , w )  ( 3 . W  
m=1 

and the extended generating function for all bridges as 
m 

X * ( u , w , z ) =  P ( u , w ) +  z T ; ( u , w ) .  (3.26) 
m = l  

In these terms, V ( u , w ) ,  the generating function for bridges ending in single 
bonds, generalizes to 

V ( u , w , z )  = X ( u , w , z )  =wZ/[1-w2X(u,W,L)] .  (3.3) 

X ' ( u , w , z )  = X ( u , w ,  2 )  -I. X ( u , w , z ) Z Q ( u , w ,  2 )  

X ( u ,  w, 2 )  = X'(u, w, % ) / [ l t  w z X ' ( u , w ,  z ) ] .  

Relation (3.1) generalizes to 

(3.4) 

whence 

(3.5) 

This relation provides the basis of a suitable truncation. The expansion of (3.5) 
to order zK requires 2'; for m = 1 to I\' and will give T, for m = 1 to K. The 
result, noted above, that T, is of order w3m provides a useful check on the algebra. 
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If we define R L ( u , w )  as the generating function for chains in a strip of width 
m such that both ends have the maximal y-coordinate then 

m 

Rk(u ,  w )  = $(P(u,  w )  - 1) + w). 0 4  
n=l 

This relation can be easily inverted to give individual R,. These are needed to 
define R ( u , w )  in (2.17) and also to recover the S,(u,w) from Y(u,w,z) (3 .8~)  
and the Qm(u, w )  from Z( U, w, z )  (3.13). 

We define S;( U, w )  as the generating function for chains in a strip of width m 
where one end of the chain has the maximal ycoordinate and the other end does 
not have an extremal ycoordinate. The general relation between the irreducible and 
unrestricted generating functions is 

S ' (u ,w)  = s ( . l l , ~ ) + I S ( ~ , ~ ) + 2 R ( u , W ) l V ( ~ , w ) [ ~ ( ~ , w ) + T ( u , W ) l .  0.7) 
We define the extended generating function for irreducible components with one 

or both ends at the maximal y co-ordinate as 
m m 

Y(u,w,z) = 2 zmR,(u,w) t zmSm(u ,w)  (3.W 
m=l  m=2 

and the corresponding unrestricted function as 
m m 

Y ' ( u , w , z ) = 2 C z m R : , ( u , w ) +  z"S:,(u,w) (3 .a)  

Y*(u,  w,z) = Y ( u , w , z ) [ l +  V(u,w,z)X(u, w,.)] 

m=l m=Z 

Equation (3.7) generalizes to 

(3.9) 
or 

y(u,W,z) = Y'(u ,w ,z ) / [ l+  V ( u , w , z ) X ( u , w , z ) ]  (3.10) 

Finally we consider QL, the generating function for chains in a strip X where 

We have 

from which the S, can be recovered once R, and T, are known for II 4 m. 

neither end has an extremal y-coordinate. 

Q * ( u , w ) =  Q ( u , w ) t  [ P ( u , w )  + 2 R ( u , ~ ) ] ~ V ( u , w )  (3.11) 

defining 

(3.12a) 

and 

(3.13) 
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Figme 3. The moss section line defining the set 
of lattice bonds which specify the parlial generating 
[unctions. 

4. m n s f e r  matrix enumeration tmhniques 

The analysis in the previous sections has reduced the problem of enumerating general 
self-avoiding walks of 41C + 3 steps to one of enumerating walks confined to strips 
of width < K subject to various constraints. In order to enumerate walks confined 
to strips we use a transfer matrix technique that generalizes the approach that we 
have used in our earlier enumeration of self-avoiding rings. We draw a cross section 
line (with a kink) across the width of a strip of width 1I' so as to cut 11' t 2 of the 
bonds on which steps of chains can occur (figure 3). We note that if we specify the 
set of occupied steps then the self-avoidance constraint acts independently to the left 
and right of the cross section line. However not all combinations of self-avoiding 
components from the left and right of the cross section line combine to give walks. 
It is necessary to consider the connectivity of the components. This can be done by 
generalizing the technique that we used in our earlier work We assign to each bond 
intersected by the cross section line an index 

n; = 0,1,2 or 3 i = 1 to K +2. 

Here '0' denotes an empty bond, '1' denotes a step connected to a (uniquely defined) 
later step, '2' denotes a step connected to a (uniquely defined) earlier step and '3' 
denotes a step not connected to any other steps intersected by the cross section line. 

If we define 

A ( i , j )  = {k: k < j and nk = i] (4.1) 

then we require 

The numbers of sets of ni subject to these constraints for various A' are given 
in table 1. These numbers give the main limitation on the size of walks that can be 
obtained because it is necessary to store a partial generating function for the number 
of walks corresponding to each set of n; allowed. These numbers, sk, are larger than 
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'hbk L ?he dzes of vectors required by the Vansfer malrix formalism. For ring 
enumeration rk mmponenu~are required. For walk enumeration SL mmponenu are 
required 

Strip width #bonds rh sk 
k 
- 1 1 2 
- 2 2 5 

1 3 4 13 
2 4 9 37 
3 5 21 106 
4 6 51 312 
5 7 127 925 
6 8 323 2 767 
7 9 835 8314 
a 10 2188 25073 
9 11 5798 75791 

10 12 41835 229495 

Table 2. Allowed Vansformations of bond indices. For the operations, 'Build' means 
incorporate the contribution into the new vector, as defined by the new indices. 
'R(a -+ b)'  means apply the change a b In the other end of the chain in order 
to qecify the index in the new vector. 'Ignore' means perform no operation, as a 
dismnnected ring has teen generated. 'A=' means accumulate the vector component 
into the chain generating function if ail the other n, are zero, otherwise the operation 
preceding the 'OR' is applied. 

Old indices New indices Overation 

the corresponding vector sizes, rk, used in the enumeration of self-avoiding walks, 
but only by a factor ~ ( k )  which is constrained as 

1 < y(k) < ;(IC' + 5k f 7). 

Thus the increase in the sk is dominated by a 3'1' increase as for the rk. 
Self-avoiding chains in strips are developed successively by advancing the 

cross section tine so that one vertex of the lattice passes from the right to the 
left of the line. Except at the beginning of a column, this corresponds to moving the 
kink down one row. This move replaces two bonds (and their associated ni) by two 
new bonds with new n i .  The other ni are unchanged except when the addition of 
the new site changes the connectivity of the components. 'l?ible 2 shows the various 
combinations of new ni that can be produced from various combinations of old ni 
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pairs. Various special cases occur. If a link from a free end (i.e. ni = 3) connects to 
an existing loop segment then the other end of the loop must be reset to type 3. If 
WO loops meet then one end must be relabelled. The closing of a single loop implies 
that a ring, disconnected from the walk, has been created and this configuration is 
ignored. The final step in the construction of a chain is when two type 3 bonds 
meet. When this occurs, all other bonds must be empty for a valid chain generating 
function to be added to the running total. If this is not the case it implies that other 
disconnected components are present and the configuration is ignored. 

The iteration is initiated from an empty state (ni E 0) with generating function 
1. As each bond is added, factors of v or Y as appropriate are used to multiply 
the old partial generating function and the product is accumulated into the running 
total for the new partial generating function. Each chain could, in principle, be 
generated for a number of different I- and ydisplacements from a given reference 
origin. ’lb ensure uniqueness in the %direction, the chain is required to intersect 
the first column considered. Thus the state with all ni zero is never continued after 
the first column has been built up. This ensures that each chain is counted only 
once and, together with the requirement that the last operation is to join two type 
3 bonds, also ensures that only one WMeCted component occurs in each graph that 
is counted. Formally, if 4k + 3 series terms are required then the uansfer matrix 
operation must be repeated until 4k + 3 columns of each strip have been generated. 
This will ensure that all the cancellations involved in going from unrestricted to 
irreducible contributions will be correct. As noted above, the cancellations provide a 
useful check on the implementation of the algebraic formalism. If however the check 
is not required then the results (2.4), (2.7), (2.10) and (214) can be assumed to be 
true. For a strip of width M it is sufficient to gcnerate only 4k + 3 - 2M columns 
of the strip. 

This requires a large amount of memory to store all the intermediate generating 
functions. If this amount of memory is not available as physical memory, but only 
as virtual (disk based) memory, the performance can be enhanced greatly by being 
careful of the order in which the partial generating functions are processed. This can 
make the entire process close to sequential, and enormously reduce the amount of 
disk access required. 

As mentioned before, when a partial generating function is processed, only the 
two ni coefficients adjacent to the site being added will change, unless this changes 
the connectivity of a loop. However in this case, it will always be a non-zero going 
to another non-zero, so if we make up a ‘partial signature’ out of the ni coefficients 
that are not being directly changed, and just record whether they are zero or not, this 
partial signature will be invariant under the transfer matrix. That is, all ‘new’ partial 
generating functions will have the same ‘partial signature’. 

We can then process all the partial generating functions with one particular partial 
signature, save the results to disk, and process the next set, until all are processed. 
We do not need to worry about the possibility of having to accumulate a new partial 
generating function to one stored on disk, because if two partial generating functions 
have different partial signatures, they definitely cannot have the same ‘full signature’ 
(ni values). 

The only problem with this is to make sure that we process all the partial 
generating functions of a particular partial signature first. Fortunately, one can get 
away without having to sort the output file before using it as input. If instead of 
saving to just one output file, two output files are used, it is possible to arrange 
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things such that one only has to read from these two files in order, and the data 
will be ordered in exactly the right way for adding the next site. This minimizes the 
amount of disk access. 'lb obtain this nice ordering, one looks at whether the new 
value of ni which will be included in the partial signature for the next phase is zero 
or not, and accordingly assigns it to one of the two output Nes. This will arrange the 
partial signatures in binary order, with the most significant bit in the partial signature 
being the most recent bit calculated, and the least signifcant bit being the oldest bit 
calculated. 

This method has a side benefit-in a multi-processor architecture, one can have 
each processor working independently on separate partial signature groups, with 
very little inter-processor communication. This means that this algorithm is easy 
to parallelize, which will become increasingly important in the future as parallel 
computers are becoming more and more popular, whilst many other algorithms are 
difficult to parallelize. 

The problem of ensuring uniqueness in the ydirection requires inclusion- 
exclusion arguments of the type used in our enumeration of self-avoiding rings. 
€br a strip of width M we classify chain generating functions as G,(&,&,&) 
where + denotes an allowed location for ends and - denotes a forbidden location. 
The three arguments refer to the top row, the bottom row and the set of internal 
rows respectively. Specifying the end locations permissively, rather than prescribing 
how many end points lie in each set allows us to treat the two ends of the chain 
independently. We have 

K 

GK(+,-,-) = k ( P -  1) + R, (4.34 
m = l  

v 

(4.34 

K K - 1  
GK(  -, -, +) = $(If- 1)( P - 1) + ( I C +  1-m) Qk +2 (IC-m)( R ,  + Sk) 

m = l  m=l 

K - 2  

+ X(IC-l-m)T;, (4 .54  
m=l  

These relations can be explicitly inverted to give 



5. Analysis of series 

This algorithm was implemented for computers in two parts. The first part was the 
transfer matrix portion; that is it computed the G functions. This was the time and 
memory intensive section. It was run up to a width of eight on an IBM RS6oOo/SW 
with 256MB of RAM, then to width nine on an IBM 3090 with 500MB RAM and 
2GB backing store. It required about 200MB and 600MB of memory respectively, and 
required several days in each case. The same machine could have been used to do 
width 10 (43 terms) given several weeks of processor time. This program was written 
in C, and reused memory whenever possible (there was only one bank of memory, 
used for both the about-to-be-processed partial generating functions, and the have- 
just-been-processed partial generating functions). The method described previously 
for using disk storage efficiently was implemented and tested, but not used as whilst 
memory was then no longer a problem, time became a large problem. 

The second part performed all the algebra. Whilst algebra on large (over 15ooO 
coefficients) polynomials in three variables is slow, it is still a minor problem compared 
to the transfer matrix section, requiring time in only hours and memory in sub- 
megabytes, so efficiency was not as vital. It was implemented in C++. 

The results for width 9 (39 terms) are given in table 3. 

Table 3 Numbers of self-avoiding walks. 

n C" n C" n C n  

0 1 14 2 374 444 28 2351 378582244 
1 4 15 6416596 29 6 279 396 229 332 
2 12 16 17 245 332 30 16741 957935 348 
3 36 17 46 466 676 31 44 673816630 956 
4 100 18 124 658 732 32 119 m4 997913 U20 
5 284 19 335 116620 33 317 406 598267 076 

7 2172 21 2408806028 35 2252 534077 759 844 
8 5916 22 6444560484 36 5995140499 124412 

10 44 100 24 46146397316 38 42 486 750 758 210044 
11 120 292 25 123481354908 39 113101676587853932 
12 324 932 26 329 712786220 
13 881 5w 27 881317491 628 

6 780 20 897 697 164 34 845 219 074 ua ma 

9 16 268 23 17266613812 37 m a  85~281 m a n 4  

The method of analysis used is based on first- and second-order differential 
approximants. It was also used in previous papers by GuttmaM (1987), Guttmann and 
Wang (1989) and is described in detail in Guttmann (1989). In summary, we construct 
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neardiagonal inhomogeneous approximants, with the degree of the inhomogeneous 
polynomial increasing from 1 to 8 in steps of 1. For first-order approximants ( K  = l), 
12 approximants are constructed that utilize a given number of series coefficients, N .  
Rejecting occasional defective approximants, we form the mean of the estimates of 
the critical point and critical exponent for fixed order of the series, N .  The error S 
assumed to be two standard deviations. A simple statistical procedure combines the 
estimates for different values of N by weighting them according to the error, with 
the estimate with the smallest error having the greatest weight. As the error tends to 
decrease with the number of terms used in the approximant, this procedure effectively 
weights approximants derived from a larger number of terms more heavily. 

lhbk 4 Estimates of the critical point ( z ~ )  and critical exponent (7) kom Brst-order 
(K = 1) and semnd-order (K = 2) differential approximants. L is the number of 
approaimants used. If L is Lw mal l  (marked with an %’), the estimates are not used 
in the subsequent statistical analysis. 

K n zc Error -7 EKOr L 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
I 
1 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
M 
31 
32 
33 
34 
35 
36 
37 
38 
39 

28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
19 

0.3790473 - -1.343 0184 
0.3790495 
0.379 0526 
0.379 0469 
0.3790468 
0.379 0520 
0.379 0573 
0.379 OS08 
0.379 0530 
03790519 
03790519 
03790517 
0.379 0518 
0.379 0514 
0.379 0521 
0379 0525 
0.379 0518 
0.3790519 
03790517 
0.379 0518 
0.379 0521 

0.379 0525 
0.379 0520 
0.379 0518 
0.379 0.518 
0.379 OS13 
0.379 OS15 
0.3790519 
0.3790521 
0.379 0519 
0.379 0520 
0.379 0520 

0.000 0004 
0.000 0105 
0.000 0133 
0.000 0071 
0.003 0038 
0.000 0052 
0 . m  0050 
0.000 0074 
0.000 0016 
0.m0010 
0.m 0016 
0.000 0011 
O.WOM17 
0.000 0016 
0.000 0028 
0.000 am3 
0.000 0003 
0.m0011 
0.m WO9 
0.m WO1 

- 
- 
o.Oo0 ow6 
0.m am5 
0.000M16 
0.000 0 0 7  
0.0000003 
0.000 0004 
0 . m  Dooh 
0.000 MO1 
0.000 WO1 

-1.343nm 
-13435231 
-1.3427806 
-13427666 
-1.3436373 
-1.3437004 
-1.3433692 
-1.343 7617 
-1.34357% 
-1.343 5632 
-1.343 5091 
-1,3435230 
-1.343 4149 
-1.3436098 
-1.343 R70 
-1.3435417 
- 1.343 S72 
- 1.343 4730 
- 1.343 5048 
-1.343 6392 

-1.343 7307 
-1.343 5885 
-1.343 5431 
-1.343 5300 
-1.3432041 
- 1.343 3885 
- 1.343 5503 
-1.3436142 
- 1.343 5607 
-1.343 5822 
-1.3435845 

- 
a@OO 1073 
awlma 
a002 1290 
ami 1925 
a m  a 3 2  
aooi 0102 
awl 0094 
ami 3817 
0.0003713 
0.0002717 
0.000 4340 
0.000 3276 
0.000 5073 

0.0007447 
0.0000956 
0.000 1233 
0.000 4568 
0.m 3501 
0.000 051 5 

aooo4is9 

- 
- 
O.Oo0 1628 
O.W1)U15 
0.001 0873 
om04434 
0.0000824 
0.000 U14 
0.000 1972 
o.owm76 
o.owm64 

lx 

4 
4 
5 
1 
9 

11 
12 
12 
9 
9 
8 
4 
9 

11 
10 
10 
8 
9 
a 
lx 
lx 
2x 
3x 
3x 
4 
5 
5 
6 
7 
6 
4 2 .. 0.3790521 O . m W M  -1.3436174 O.WO0516 

For second-order approximants (K = 2), we construct eight distinct approximants 
for each value of N .  A summary of the results of this process is shown in table 4. 
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The statistical procedure used to combine the results gives 

A R Conway et a1 

zC = 0.379052 f O.ooOoO1 

zc = 0.3790520~0.0000005 y = 1.3436rt0.00015 ( K =  2). 

y = 1.3435 f 0.0003 (h'= 1) 

These results provide abundant support, if support is still needed, for the value 
y = 1.34375 obtained by Nienhuis (1982, 1984). 'RI refine the estimate of the critical 
point, linear regression is used. There is a strong correlation between estimates of 
the critical point and critical exponent. This is quantified by linear regression, and in 
this way the biased estimates (biased at y = 43/32) are obtained. 

We h d  

zc = 0.3790524 f O.ooOooO5 

xc = 0.3790525 f O.ooOooO5 

( K  = 1) 

( K  = 2). 

These are in excellent agreement with previous estimates based on the 56 term 
polygon series (Guttmann and Enting 1988), x, = 0.37905228+ O.ooOooO14. 

For the honeycomb lattice, the 'connective constant' = l/x, is known exactly 
(Nienhuis 1982, 1984), and is m, which satisfies a simple quadratic equation in 
z:. A feature of Maple (Version 5) is a clever algorithm for seeking polynomials with 
integer coefficients that have a given root. Attempting to find a quartic polynomial 
that gave as a rmt the biased value of zc quoted above, we found the best solution 
was also a polynomial quadratic in & It was 

581x4 + 7x2 - 13 = 0. 

The root is zc = 0.37905227. . . . While we consider it would be fortuitous if this 
were the me value of the critical point, it nevertheless provides a useful mnemonic. 

Another analysis we were able to carry out with this long series was a study of 
amplitudes of the leading term and the correction terms. As previously discussed 
for self-avoiding polygons (Guttmann and Enting 1988), we have found no evidence 
for any non-analytic correction-to-scaling term other than that suggested by Nienhuis, 
with a 'correction' exponent of A = 1.5. In the case of the plygon generating 
function this 'folds into' the additive analytic term. However, for the SAW series, it 
gives rise to a non-analytic correction term. Furthermore, there is another singularity 
on the negative real axis, at x = -zc, as shown by Guttmann and Whittington (1978). 

Thus we expect the generating function for walks to behave like 

qz)= ~ ~ , ~ h ~ ~ ( + ) ( i - ~ ~ ) - ~ / ~ * [ i +  B ( X ) ( I - P Z ) ~ / ~ + . . ~ I  

+ D ( z ) ( l  + PX)+I/Z. ( 5 4  

The exponent for the singularity on the negative real axis reflects the fact that this 
term is expected to behave as the energy, and hence to have exponent 1 - a, where 
a = i. From the above, it follows that the asymptotic form of the coefficients, c,, 
behaves like 

cn - pn[aln"/32 + a2n-21/32 + b1n-n/32 + (-l)"dln-3/2+ ( -1)nd2n-5/2] .  
(5.2) 
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W k  5. Sequences of amplitude eslimales. Refer lo equalion (5.2). 

n d2 dt b t  a2 a1 
29 0.0639 -ai878 -0.1999 os584 i . i 7 m  
30 0.0666 -0.1879 -0.2022 0.5590 1.17659 
31 0.0715 -0.1881 -0.1980 0.5579 1,17700 
32 0.0738 -0.1882 -0.1999 0.5584 1.17700 
33 0.0781 -0.1883 -0.1963 0.5574 1.17701 
34 0.0800 -0.1884 -0.1979 0.5578 1.77700 
35 0.0838 -0.1885 -0.1947 0.5570 1.77701 
35 0.0855 -0.1885 -0.1960 0.5573 1.77701 
37 0.0890 -0.1886 -0.1932 0.5566 1.77701 
38 0.0904 -0.1887 -0.1943 0.5569 1.77701 
39 0.0936 -0.1888 -0.1919 0.5563 1.77702 

The five amplitudes, al, az, b,, d, and d, come from the leading singularity (giving 
rise to a, and az), the correction-to-scaling term (giving rise to b,) and the 
term on the negative real axis (giving rise to d, and d2). A small program 
written in Mathematica was used to fit successive quintuples of coefficients, 
c,,-,, c , - ~ ,  cn-,, c,-, and cn for R = 6,7,8,. . . ,39. The results are given in 
table 5. 

With the possible exception of the sequence {d,}, the sequences for the various 
amplitudes appear to be converging. Various other values for the exponents were also 
tried, including a square-root correction-to-scaling term. In all cases the convergence 
was dramatically worsened by such changes. Indeed, with a square-root correction-to- 
scaling exponent, a number of sequences appeared to diverge rather than converge. 
However, we have assumed above that the sub-leading term of the singularity on 
the negative real axis is analytic. If we allow this singularity lo be a s uare root 

results converge even faster, as shown in table 6. 
singularity, so that the last term in (5.2) above becomes ~ , ( - l ) ~ d , n -  9 then the 

W k  6. Sequenes of amplitude eslimater. wilh lhe exponent associated wilh d2 changed 
from -; to -2. Refer to equation (5.2). 

n 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

- dz di 
0.0246 -0.1902 
0.0252 -0.1903 
0.0266 -0.1906 
0.0270 -0.1906 
0.0281 -0.1908 
0.0283 -0.1909 
0.0292 -0.1910 
0.0293 -0.1910 
0.0301 -0.1912 
0.0301 -0.1912 
0.0308 -0.1912 

b i  

-0.2W4 
-0.2017 
-0.1985 
-0.1994 
-0.1969 
-0.1974 
-0.1952 
-0.1955 
-0.1937 
-0.1939 
-0.1923 

a2 

05585 
0.5589 
05580 
05583 
05576 

0.5571 
0.5572 
0.5568 
0.5568 
0.5564 

osn 

a1 

1.17699 
1.17699 
1.17700 
1.17700 
1.17700 
1.17700 
1.17701 
1.17701 
1.17701 
1.17701 
1.17702 

From these tables we estimate a, % 1.1771, aZ % 0.554, b, % -0.19, d,  % -0.19, 
where errors are expected to be confined to the last quoted digit in each case. 
Repeating the above calculations with a critical p i n t  shifted by twice the confidence 
limit quoted does not change these amplitude estimates. 
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This then completes our numerical study of the generating function for self- 
avoiding walks. 
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