Algebraic techniques for enumerating self-avoiding walks on the square lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 261519
(http://iopscience.iop.org/0305-4470/26/7/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 21:04

Please note that terms and conditions apply.

Algebraic techniques for enumerating self-avoiding walks on the square lattice

A R Conway \dagger, I G Enting \dagger § and A J Guttmann $\ddagger \mid 1$
† Department of Mathematics, The University of Melbourne, Parkville, Victoria 3052, Australia
\ddagger Department of Theoretical Physics, Oxford University, 1 Keble Road, Oxford, OX1 3NP, UK

Received 25 September 1992

Abstract

We describe a new algebraic technique for enumerating self-avoiding walks on the rectangular lattice. The computational complexity of enumerating walks of N steps is of order $3^{N / 4}$ times a polynomial in N, and so the approach is greatly superior to direct counting techniques. We have enumerated walks of up to 39 steps. As a consequence, we are able to accurately estimate the critical point, critical exponent, and critical amplitude.

1. Introduction

Over the years, the enumeration of square lattice self-avoiding walks has become a benchmark, first for computer performance, and more recently for algorithm design. In the early 1970's, Sykes et al (1972) obtained 24 terms of the series by using the chain counting theorem. Direct enumeration is probably somewhat faster, but the graphs enumerated for the chain counting theorem (figure-eights, theta graphs, dumbells and polygons) were useful for other problems in the theory of phase transitions, most notably the Ising model. Guttmann (1987) extended the series by three terms, using direct enumeration, and Guttmann and Wang (1991) using a dimerization algorithm obtained two further terms. Subsequently McDonald et al (1992) obtained a further term, using an extension of dimerization to trimerization. Late in 1991, Masand et al (1992) used a large supercomputer, a CM-2 containing 65536 processors, to extend the series to 34 terms, running for ~ 100 hours. All these advances came about because of improvements in computer technology (in large part), with relatively small improvements brought about by algorithm design. (Dimerization or trimerization saves a factor of around 2 or 3 , but does not ameliorate the exponential growth rate of computer time.)

The finite-lattice method plus transfer matrices described here allows 35 terms to be obtained on a work station (an IBM $6000 / 530$ with 256 MB of memory) in less time than the 65536 processor CM-2 took to obtain 34 terms. Because of memory
§ Permanent address: CSIRO, Division of Atmospheric Research, Private Bag 1, Mordialloc, Victoria 3195, Australia.
|| Permanent address: Department of Mathematics, The University of Melbourne, Parkville, Victoria 3052, Australia.
requirements, it was necessary to move to a larger machine (an IBM $3090 / 400$ with 500MB memory and 2GB of backing storage) to go from 35 to 39 steps. This computer would be capable of extending the series to 43 terms. However that calculation might take up to a month of CPU time, and so has not been pursued. This improvement however is due to the exponential improvement in algorithm design, rather than evolution of computer speed. This is discussed in more detail below.

The method used is based on the method which Enting and Guttmann have used extensively over the past twelve years to enumerate self-avoiding rings on a square lattice, but is significantly more complicated due to the requirement for a second stage of processing.

In a series of papers we have reported some significant improvements in the enumeration of self-avoiding rings on the square lattice extending the known series (Sykes et al 1972) from 26 steps to 38 steps (Enting 1980), 46 steps (Enting and Guttmann 1985) and 56 steps (Guttmann and Enting 1988). The extension from 38 steps to 56 steps reflects our use of increasingly powerful computing systems and in particular the use of increasingly large amounts of physical and virtual memory. Only minor changes to our programs have been made, primarily to 'tune' the procedure to make efficient use of particular computer architectures. We have also generalized our method to enumerate caliper moments of self-avoiding rings on the square lattice (Guttmann and Enting 1988) and also to enumerate self-avoiding rings on the L and Manhattan lattices (Enting and Guttmann 1985) and the honcycomb lattice (Enting and Guttmann 1989). Most recently we have extended the enumeration of triangular lattice polygons to 25 steps (as reported by Enting and Guttmann 1990) and then to 35 steps (Enting and Guttmann 1992).

While our techniques have been highly efficient for enumerating self-avoiding rings they are less suitable for enumerating self-avoiding walks. The difficulty is that walks can span a larger lattice than rings because they are not forced to return. A walk of L steps can span a distance L while a ring of L steps can only span a distance of up to $L / 2$. For walks constrained by a surface our polygon enumeration techniques could be generalized in analogy with our calculation of surface susceptibilities for the square lattice (Enting and Guttmann 1980).

The present paper presents an algebraic technique for enumerating self-avoiding walks on a rectangular lattice. The basic quantity that we consider is $C_{m n}$, the number of walks from a given origin with n steps in the $\pm x$ directions and m steps in the $\pm y$ directions. We consider segments of walks that double back in the y-direction and which can therefore be counted efficiently by transfer matrix techniques. The general enumeration can be expressed as a combination of such irreducible contributions. We further improve the efficiency of the procedure by restricting the range of the index n to $n \leqslant k$ and reconstruct $C_{m n}$ for $m+n \leqslant 2 k+1$ by using the symmetry relation

$$
\begin{equation*}
C_{m n}=C_{n m} . \tag{1.1}
\end{equation*}
$$

The layout of the remainder of this paper is as follows. Section 2 describes the way in which the generating function for self-avoiding walks can be constructed from irreducible contributions. Section 3 shows the way in which these irreducible contributions can be constructed from generating functions for walks on strips that can be determined by algebraic techniques. Section 4 describes the algorithms for determining the requisite generating functions and analyses the computational complexity of the procedure. Section 5 describes our analysis of the singularity

Figure 1. Schematic representation of projections of self-avoiding walks onto the y-axis.
Q

Figure 2. The five types of irreducible component from which self-avoiding walks are constructed.
structure of the generating function for self-avoiding walks based on the 39 terms that we have obtained.

2. Generating functions for self-avoiding walks

The generating function for self-avoiding walks on the rectangular lattice is

$$
\begin{equation*}
C(u, w)=\sum_{m, n=0}^{\infty} C_{m n} w^{m} u^{n} \tag{2.1}
\end{equation*}
$$

The enumeration of the coefficients $C_{m n}$ is restricted to finite-order in m and/or n and we generally truncate the double series at $m+n \leqslant J$. The obvious summation then gives us the number of walks of up to J steps on the square lattice.

Our enumeration procedure is based on considering projections of walks onto the y-axis to produce the type of diagrams shown in figure 1 . We refer to segments of walks as irreducible if the projection of that segment onto the y-axis has two or more y-bonds in each position. We will also classify irreducible segments by the number of y-bonds that they span. At this point we need to refine the terminology and distinguish between walks which are directed graphs and chains which are not directed. Our aim is to enumerate walks while the transfer matrix techniques generally enumerate chains. The decomposition of walks into irreducible components makes use of both chains and walks.

Figure 2 shows the five distinct types of irreducible component that we need to consider.
$P(u, w)$ is the generating function for walks that have no y-bonds, thus

$$
\begin{equation*}
P(u, w)=1+2 u+2 u^{2}+2 u^{3}+\cdots=(1+u) /(1-u) . \tag{2.2}
\end{equation*}
$$

$Q(u, w)$ is the generating function for chains that are irreducible and for which neither end-point lies at an extremal y-coordinate. We also consider subdividing such cases according to m, the number of y-bonds spanned by the projection and define $Q_{m}(u, w)$ accordingly. The two pertinent results are

$$
\begin{equation*}
Q(u, w)=\sum_{m=2}^{\infty} Q_{m}(u, w) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{m}(u, w)=\mathrm{O}\left(w^{2 m}\right) \tag{2.4}
\end{equation*}
$$

Note that from the definition

$$
\begin{equation*}
Q_{0} \equiv Q_{1} \equiv 0 . \tag{2.5}
\end{equation*}
$$

$R(u, w)$ is the generating function for irreducible chains with both endpoints having the maximal y-coordinate. Again we subdivide these chains according to the number of y-bonds spanned and put

$$
\begin{align*}
& R(u, w)=\sum_{m=1}^{\infty} R_{m}(u, w) \tag{2.6}\\
& R_{m}(u, w)=O\left(w^{2 m}\right) \tag{2.7}
\end{align*}
$$

and arbitrarily define

$$
\begin{equation*}
R_{0} \equiv 0 \tag{2.8}
\end{equation*}
$$

$S(u, w)$ is the generating function for irreducible chains that have precisely one end having the maximal y-coordinate. Again

$$
\begin{align*}
& S(u, w)=\sum_{m=2}^{\infty} S_{m}(u, w) \tag{2.9}\\
& S_{m}(u, w)=O\left(w^{2 m+1}\right) \tag{2.10}
\end{align*}
$$

and from the definition

$$
\begin{equation*}
S_{0} \equiv S_{1} \equiv 0 \tag{2.11}
\end{equation*}
$$

Finally $T(u, w)$ is the generating function for irreducible chains in which the two ends have maximal and minimal y-coordinates. We arbitrarily define

$$
\begin{equation*}
T_{0} \equiv 0 \tag{2.12}
\end{equation*}
$$

so that

$$
\begin{align*}
& T(u, w)=\sum_{m=1}^{\infty} T_{m}(u, w) \tag{2.13}\\
& T_{m}(u, w)=O\left(w^{3 m}\right) \tag{2.14}
\end{align*}
$$

When constructing the generating functions for walks we combine the irreducible components represented by P, Q, R, S and T by linking them with single y-bonds. These each contribute a factor of w to the generating function $C(u, w)$. Two single y-bonds that are adjacent in the projection are actually connected by a type P irreducible component. A chain whose projection is k consecutive single y-bonds will have a factor of P at each internal point. Note that the walk generating function P is required because each distinct direction along the x-axis will generate a distinct chain when combined with y-bonds. If we sum these contributions we can consider linking components of types R, S and T with chains of one or more y-bonds connecting type P walks. The generating function for such chains is

$$
\begin{align*}
U(u, w) & =w+w P w+w P w P w+\cdots \\
& =w /(1-w P(u, w)) \tag{2.15}
\end{align*}
$$

In the same way we can regard the overall chain as consisting of end segments P, R or S connected by combinations of 'reducible' parts with generating function U and irreducible parts with generating function T. The generating function for chains connecting irreducible end segments is thus

$$
\begin{align*}
V(u, w) & =U+U T U+U T U T U+\cdots \\
& =U /(1-T U) \\
& =w /(1-w(T+P)) \tag{2.16}
\end{align*}
$$

It is now possible to express the self-avoiding walk generating function as

$$
\begin{align*}
C(u, w)= & P(u, w)+2[Q(u, w)+2 R(u, w)+2 S(u, w)+T(u, w)] \\
& +2 V(u, w)[P(u, w)+2 R(u, w)+S(u, w)+T(u, w)]^{2} \tag{2.17}
\end{align*}
$$

The structure of expression (2.17) shows that to obtain an expansion in powers of w, it is necessary to obtain Q, R, S, and T to the requisite order. If the irreducible generating functions Q_{m}, R_{m}, S_{m} and T_{m} are known for $m \leqslant M$ then $C(u, w)$ will be correct to $w^{2 M+1}$ (the first incorrect term arising from the absences of Q_{M+1} and R_{M+1}). The use of the symmetry relations (1.1) will give $C_{m n}$ for $m+n \leqslant 4 M+3$.

3. Combining generating functions for chains on strips

The transfer matrix techniques described in the next section produce generating functions for sets of walks confined to strips whose y-coordinates are bounded. Subject to these constraints, all chains are counted, not merely irreducible components. Thus there is a need to relate unrestricted generating functions to the restricted generating functions for irreducible components. In our previous enumerations of self-avoiding rings only linear combinations of different classes of graph were involved and so the restricted generating functions were linear combinations of unrestricted generating functions. The present formalism is more complicated because nonlinear relations are involved. We begin by considering $T_{M}^{*}(u, w)$, the generating function for chains whose y-coordinates span M bonds and which have one end at each y-extremum, that is, T_{M}^{*} is the generating function for bridges. The sum over M is denoted $T^{*}(u, w)$. By considering the appropriate subset of terms from (2.17) we have

$$
\begin{equation*}
T^{*}(u, w)=T(u, w)+(P(u, w)+T(u, w))^{2} V(u, w) \tag{3.1}
\end{equation*}
$$

While this equation is formally correct, it is unsuitable for relating T^{*} to T because of the fact that while T_{m} is of order $w^{3 m}, T_{m}^{*}$ is of order w^{m}. Thus to obtain T correct to w^{K} would require the calculation of T_{m}^{*} for $m \leqslant K$. This difficulty is avoided by introducing an extra variable z whose power corresponds to the width of the segment under consideration. We refer to functions including z as 'extended generating functions'. We define the extended generating function for irreducible bridges as

$$
\begin{equation*}
X(u, w, z)=P(u, w)+\sum_{m=1}^{\infty} z^{m} T_{m}(u, w) \tag{3.2a}
\end{equation*}
$$

and the extended generating function for all bridges as

$$
\begin{equation*}
X^{*}(u, w, z)=P(u, w)+\sum_{m=1}^{\infty} z^{m} T_{m}^{*}(u, w) \tag{3.2b}
\end{equation*}
$$

In these terms, $V(u, w)$, the generating function for bridges ending in single bonds, generalizes to

$$
\begin{equation*}
V(u, w, z)=X(u, w, z)=w z /[1-w z X(u, w, z)] . \tag{3.3}
\end{equation*}
$$

Relation (3.1) generalizes to

$$
\begin{equation*}
X^{*}(u, w, z)=X(u, w, z)+X(u, w, z)^{2} \tilde{V}(u, w, z) \tag{3.4}
\end{equation*}
$$

whence

$$
\begin{equation*}
X(u, w, z)=X^{*}(u, w, z) /\left[1+w z X^{*}(u, w, z)\right] \tag{3.5}
\end{equation*}
$$

This relation provides the basis of a suitable truncation. The expansion of (3.5) to order z^{K} requires T_{m}^{*} for $m=1$ to K and will give T_{m} for $m=1$ to K. The result, noted above, that T_{m} is of order $w^{3 m}$ provides a useful check on the algebra.

If we define $R_{m}^{*}(u, w)$ as the generating function for chains in a strip of width m such that both ends have the maximal y-coordinate then

$$
\begin{equation*}
R_{m}^{*}(u, w)=\frac{1}{2}(P(u, w)-1)+\sum_{n=1}^{m} R_{n}(u, w) \tag{3.6}
\end{equation*}
$$

This relation can be easily inverted to give individual R_{m}. These are needed to define $R(u, w)$ in (2.17) and also to recover the $S_{m}(u, w)$ from $Y(u, w, z)$ (3.8a) and the $Q_{m}(u, w)$ from $Z(u, w, z)$ (3.13).

We define $S_{m}^{*}(u, w)$ as the generating function for chains in a strip of width m where one end of the chain has the maximal y-coordinate and the other end does not have an extremal y-coordinate. The general relation between the irreducible and unrestricted generating functions is

$$
\begin{equation*}
S^{*}(u, w)=S(u, w)+[S(u, w)+2 R(u, w)] V(u, w)[P(u, w)+T(u, w)] \tag{3.7}
\end{equation*}
$$

We define the extended generating function for irreducible components with one or both ends at the maximal y co-ordinate as

$$
\begin{equation*}
Y(u, w, z)=2 \sum_{m=1}^{\infty} z^{m} R_{m}(u, w)+\sum_{m=2}^{\infty} z^{m} S_{m}(u, w) \tag{3.8a}
\end{equation*}
$$

and the corresponding unrestricted function as

$$
\begin{equation*}
Y^{*}(u, w, z)=2 \sum_{m=1}^{\infty} z^{m} R_{m}^{*}(u, w)+\sum_{m=2}^{\infty} z^{m} S_{n}^{*}(u, w) \tag{3.8b}
\end{equation*}
$$

Equation (3.7) generalizes to

$$
\begin{equation*}
Y^{*}(u, w, z)=Y(u, w, z)[1+\bar{V}(u, w, z) X(u, w, z)] \tag{3.9}
\end{equation*}
$$

or

$$
\begin{equation*}
Y(u, w, z)=Y^{*}(u, w, z) /[1+\tilde{V}(u, w, z) X(u, w, z)] \tag{3.10}
\end{equation*}
$$

from which the S_{m} can be recovered once R_{n} and T_{n} are known for $n \leqslant m$.
Finally we consider Q_{m}^{*}, the generating function for chains in a strip X where neither end has an extremal y-coordinate.

We have

$$
\begin{equation*}
Q^{*}(u, w)=Q(u, w)+[P(u, w)+2 R(u, w)]^{2} V(u, w) \tag{3.11}
\end{equation*}
$$

defining

$$
\begin{equation*}
Z(u, w, z)=\sum_{m=2}^{\infty} z^{m} Q_{m}(u, w) \tag{3.12a}
\end{equation*}
$$

and

$$
\begin{equation*}
Z^{*}(u, w, z) \sum_{m=2}^{\infty} z^{m} Q^{*}(u, w) \tag{3.12b}
\end{equation*}
$$

gives

$$
\begin{equation*}
Z(u, w, z)=Z^{*}(u, w, z)-Y(u, w, t)^{2} \bar{V}(u, w, z) \tag{3.13}
\end{equation*}
$$

Figure 3. The cross section line defining the set of lattice bonds which specify the partial generating functions.

4. Transfer matrix enumeration techniques

The analysis in the previous sections has reduced the problem of enumerating general self-avoiding walks of $4 K+3$ steps to one of enumerating walks confined to strips of width $\leqslant K$ subject to various constraints. In order to enumerate walks confined to strips we use a transfer matrix technique that generalizes the approach that we have used in our earlier enumeration of self-avoiding rings. We draw a cross section line (with a kink) across the width of a strip of width K so as to cut $K+2$ of the bonds on which steps of chains can occur (figure 3). We note that if we specify the set of occupied steps then the self-avoidance constraint acts independently to the left and right of the cross section line. However not all combinations of self-avoiding components from the left and right of the cross section line combine to give walks. It is necessary to consider the connectivity of the components. This can be done by generalizing the technique that we used in our earlier work. We assign to each bond intersected by the cross section line an index

$$
n_{i}=0,1,2 \text { or } 3 \quad i=1 \text { to } \mathrm{K}+2
$$

Here ' 0 ' denotes an empty bond, ' 1 ' denotes a step connected to a (uniquely defined) later step, ' 2 ' denotes a step connected to a (uniquely defined) earlier step and ' 3 ' denotes a step not connected to any other steps intersected by the cross section line.

If we define

$$
\begin{equation*}
A(i, j)=\left\{k: k \leqslant j \text { and } n_{k}=i\right\} \tag{4.1}
\end{equation*}
$$

then we require

$$
\begin{align*}
& |A(1, j)| \geqslant|A(2, j)| \quad \text { for all } j \tag{4.2a}\\
& |A(1, K+2)|=|A(2, K+2)| \tag{4.2b}
\end{align*}
$$

as in the enumeration of self-avoiding rings and

$$
\begin{equation*}
|A(3, K+2)| \leqslant 2 \tag{4.2c}
\end{equation*}
$$

The numbers of sets of n_{i} subject to these constraints for various K are given in table 1. These numbers give the main limitation on the size of walks that can be obtained because it is necessary to store a partial generating function for the number of walks corresponding to each set of n_{i} allowed. These numbers, s_{k}, are larger than

Table 1. The sizes of vectors required by the transfer matrix formalism. For ring enumeration r_{k} components are required. For walk enumeration s_{k} components are required.

Strip width k	\#bonds	r_{k}	s_{k}
-	1	1	2
-	2	2	5
1	3	4	13
2	4	9	37
3	5	21	106
4	6	51	312
5	7	127	925
6	8	323	2767
7	9	835	8314
8	10	2188	25073
9	11	5798	75791
10	12	41835	229495

Table 2. Allowed transformations of bond indices. For the operations, 'Build' means incorporate the contribution into the new vector, as defined by the new indices. ' $\mathrm{R}(a \rightarrow b)$ ' means apply the change $a \rightarrow b$ to the other end of the chain in order to specify the index in the new vector. 'Ignore' means perform no operation, as a disconnected ring has been generated. 'Acc' means accumulate the vector component into the chain generating function if all the other n, are zero, otherwise the operation preceding the 'OR' is applied.

Old indices $\left(n_{j}, n_{j+1}\right)$	New indices $\left(n_{j}, n_{j}+1\right)$	Operation
$(0,0)$	$(0,0),(0,3),(3,0)$ or $(1,2)$	Build
$(0,1)$ or $(1,0)$	$(0,1),(1,0)$ or $(0,0)$	$\mathrm{R}(2 \rightarrow 3)$
$(0,2)$ or $(2,0)$	$(0,2),(2,0)$ or $(0,0)$	$\mathrm{R}(1 \rightarrow 3)$
$(0,3)$ or $(3,0)$	$(0,3),(3,0)$	Build OR Acc
$(1,1)$	$(0,0)$	$\mathrm{R}(2 \rightarrow 1)$
$(2,2)$	$(0,0)$	$\mathrm{R}(1 \rightarrow 2)$
$(1,2)$	-	Ignore
$(2,1)$	$(0,0)$	
$(3,3)$	-	Ignore OR Acc
$(3,1),(1,3)$	$(0,0)$	$\mathrm{R}(2 \rightarrow 3)$
$(3,2),(2,3)$	$(0,0)$	$\mathrm{R}(1 \rightarrow 3)$

the corresponding vector sizes, r_{k}, used in the enumeration of self-avoiding walks, but only by a factor $\gamma(k)$ which is constrained as

$$
1 \leqslant \gamma(k) \leqslant \frac{1}{2}\left(k^{2}+5 k+7\right)
$$

Thus the increase in the s_{k} is dominated by a $3^{k / 4}$ increase as for the r_{k}.
Self-avoiding chains in strips are developed successively by advancing the cross section line so that one vertex of the lattice passes from the right to the left of the line. Except at the beginning of a column, this corresponds to moving the kink down one row. This move replaces two bonds (and their associated n_{i}) by two new bonds with new n_{i}. The other n_{i} are unchanged except when the addition of the new site changes the connectivity of the components. Table 2 shows the various combinations of new n_{i} that can be produced from various combinations of old n_{i}
pairs. Various special cases occur. If a link from a free end (i.e. $n_{i}=3$) connects to an existing loop segment then the other end of the loop must be reset to type 3 . If two loops meet then one end must be relabelled. The closing of a single loop implies that a ring, disconnected from the walk, has been created and this configuration is ignored. The final step in the construction of a chain is when two type 3 bonds meet. When this occurs, all other bonds must be empty for a valid chain generating function to be added to the running total. If this is not the case it implies that other disconnected components are present and the configuration is ignored.

The iteration is initiated from an empty state ($n_{i} \equiv 0$) with generating function 1. As each bond is added, factors of v or w as appropriate are used to multiply the old partial generating function and the product is accumulated into the running total for the new partial generating function. Each chain could, in principle, be generated for a number of different x - and y-displacements from a given reference origin. To ensure uniqueness in the x-direction, the chain is required to intersect the first column considered. Thus the state with all n_{i} zero is never continued after the first column has been built up. This ensures that each chain is counted only once and, together with the requirement that the last operation is to join two type 3 bonds, also ensures that only one connected component occurs in each graph that is counted. Formally, if $4 k+3$ series terms are required then the transfer matrix operation must be repeated until $4 k+3$ columns of each strip have been generated. This will ensure that all the cancellations involved in going from unrestricted to irreducible contributions will be correct. As noted above, the cancellations provide a useful check on the implementation of the algebraic formalism. If however the check is not required then the results (2.4), (2.7), (2.10) and (2.14) can be assumed to be true. For a strip of width M it is sufficient to generate only $4 k+3-2 M$ columns of the strip.

This requires a large amount of memory to store all the intermediate generating functions. If this amount of memory is not available as physical memory, but only as virtual (disk based) memory, the performance can be enhanced greatly by being careful of the order in which the partial generating functions are processed. This can make the entire process close to sequential, and enormously reduce the amount of disk access required.

As mentioned before, when a partial generating function is processed, only the two n_{i} coefficients adjacent to the site being added will change, unless this changes the connectivity of a loop. However in this case, it will always be a non-zero going to another non-zero, so if we make up a 'partial signature' out of the n_{i} coefficients that are not being directly changed, and just record whether they are zero or not, this partial signature will be invariant under the transfer matrix. That is, all 'new' partial generating functions will have the same 'partial signature'.

We can then process all the partial generating functions with one particular partial signature, save the results to disk, and process the next set, until all are processed. We do not need to worry about the possibility of having to accumulate a new partial generating function to one stored on disk, because if two partial generating functions have different partial signatures, they definitely cannot have the same 'full signature' (n_{i} values).

The only problem with this is to make sure that we process all the partial generating functions of a particular partial signature first. Fortunately, one can get away without having to sort the output file before using it as input. If instead of saving to just one output file, two output files are used, it is possible to arrange
things such that one only has to read from these two files in order, and the data will be ordered in exactly the right way for adding the next site. This minimizes the amount of disk access. To obtain this nice ordering, one looks at whether the new value of n_{i} which will be included in the partial signature for the next phase is zero or not, and accordingly assigns it to one of the two output files. This will arrange the partial signatures in binary order, with the most significant bit in the partial signature being the most recent bit calculated, and the least significant bit being the oldest bit calculated.

This method has a side benefit-in a multi-processor architecture, one can have each processor working independently on separate partial signature groups, with very little inter-processor communication. This means that this algorithm is easy to parallelize, which will become increasingly important in the future as parallel computers are becoming more and more popular, whilst many other algorithms are difficult to parallelize.

The problem of ensuring uniqueness in the y-direction requires inclusionexclusion arguments of the type used in our enumeration of self-avoiding rings. For a strip of width M we classify chain generating functions as $G_{m}(\pm, \pm, \pm)$ where + denotes an allowed location for ends and - denotes a forbidden location. The three arguments refer to the top row, the bottom row and the set of internal rows respectively. Specifying the end locations permissively, rather than prescribing how many end points lie in each set allows us to treat the two ends of the chain independently. We have

$$
\begin{align*}
G_{K}(+,-,-) & =\frac{1}{2}(P-1)+\sum_{m=1}^{K} R_{m} \tag{4.3a}\\
G_{K}(+,+,-) & =T_{K}^{*}+P-1+2 \sum_{m=1}^{K} R_{m} \tag{4.3b}\\
G_{K}(+,-,+) & =\frac{1}{2} K(P-1)+\sum_{m=1}^{K}(K+1-m)\left(R_{m}+Q_{m}^{*}+S_{m}^{*}\right) \\
& +\sum_{m=1}^{K}(K-m)\left(T_{m}^{*}+R_{m}+S_{m}^{*}\right) \tag{4.3c}\\
G_{K}(-,-,+) & =\frac{1}{2}(K-1)(P-1)+\sum_{m=1}^{K}(K+1-m) Q_{m}^{*}+2 \sum_{m=1}^{K-1}(K-m)\left(R_{m}+S_{m}^{*}\right) \\
& +\sum_{m=1}^{K-2}(K-1-m) T_{m}^{*} \tag{4.3d}
\end{align*}
$$

These relations can be explicitly inverted to give

$$
\begin{align*}
& R_{m}=G_{m}(+,-,-)-G_{m-1}(+,-,-) \tag{4.4a}\\
& Q_{m}^{*}=G_{m}(-,-,+)-G_{m-1}(+,-,+)-\sum_{n=1}^{m-1}\left(Q_{n}^{*}+R_{n}+S_{n}^{*}\right) \tag{4.4b}
\end{align*}
$$

$$
\begin{align*}
& S_{m}^{*}= G_{m}(+,-,+)-G_{m-1}(+,-,+)-G_{m}(+,-,-)-G_{m-1}(+,-,-) \\
& \quad-\frac{1}{2}(P-1)-Q_{m}^{*}-\sum_{n=1}^{m-1}\left(Q_{n}^{*}+2 * S_{n}^{*}+T_{m}^{*}\right) \tag{4.4c}\\
& T_{m}^{*}=G_{m}(+,+,-)-2 G_{m}(+,-,-) \tag{4.4d}
\end{align*}
$$

5. Analysis of series

This algorithm was implemented for computers in two parts. The first part was the transfer matrix portion; that is it computed the G functions. This was the time and memory intensive section. It was run up to a width of eight on an IBM RS6000/530 with 256 MB of RAM, then to width nine on an IBM 3090 with 500 MB RAM and 2 GB backing store. It required about 200 MB and 600 MB of memory respectively, and required several days in each case. The same machine could have been used to do width 10 (43 terms) given several weeks of processor time. This program was written in C, and reused memory whenever possible (there was only one bank of memory, used for both the about-to-be-processed partial generating functions, and the have-just-been-processed partial generating functions). The method described previously for using disk storage efficiently was implemented and tested, but not used as whilst memory was then no longer a problem, time became a large problem.

The second part performed all the algebra. Whilst algebra on large (over 15000 coefficients) polynomials in three variables is slow, it is still a minor problem compared to the transfer matrix section, requiring time in only hours and memory in submegabytes, so efficiency was not as vital. It was implemented in $\mathrm{C}++$.

The results for width 9 (39 terms) are given in table 3.

Table 3. Numbers of self-avoiding walks.

n	c_{n}	n	c_{n}	n	c_{n}
0	1	14	2374444	28	2351378582244
1	4	15	6416596	29	6279396229332
2	12	16	17245332	30	16741957935348
3	36	17	46466676	31	44673816630956
4	100	18	124658732	32	119034997913020
5	284	19	335116620	33	317406598267076
6	780	20	897697164	34	845279074648708
7	2172	21	2408806028	35	2252534077759844
8	5916	22	6444560484	36	5995740499124412
9	16268	23	17266613812	37	15968852281708724
10	44100	24	46146397316	38	42486750758210044
11	120292	25	123481354908	39	113101676587853932
12	324932	26	329712786220		
13	881500	27	881317491628		

The method of analysis used is based on first- and second-order differential approximants. It was also used in previous papers by Guttmann (1987), Guttmann and Wang (1989) and is described in detail in Guttmann (1989). In summary, we construct
near-diagonal inhomogeneous approximants, with the degree of the inhomogeneous polynomial increasing from 1 to 8 in steps of 1 . For first-order approximants ($K=1$), 12 approximants are constructed that utilize a given number of series coefficients, N. Rejecting occasional defective approximants, we form the mean of the estimates of the critical point and critical exponent for fixed order of the series, N. The error is assumed to be two standard deviations. A simple statistical procedure combines the estimates for different values of N by weighting them according to the error, with the estimate with the smallest error having the greatest weight. As the error tends to decrease with the number of terms used in the approximant, this procedure effectively weights approximants derived from a larger number of terms more heavily.

Table 4. Estimates of the critical point (x_{c}) and critical exponent (γ) from first-order ($K=1$) and second-order $(K=2)$ differential approximants. L is the number of approximants used. If L is too small (marked with an 'x'), the extimates are not used in the subsequent statistical analysis.

K	n	x_{c}	Error	γ	Error	L
1	19	0.3790473	-	-1.3430184	-	1 x
1	20	0.3790495	0.0000004	-1.3432502	0.0001073	2 x
1	21	0.3790526	0.0000105	-1.3435231	0.0016130	4
1	22	0.3790469	0.0000133	-1.3427806	0.0021290	4
1	23	0.3790468	0.0000071	-1.3427666	0.0011925	5
1	24	0.3790520	0.0000038	-1.3436373	0.0006432	7
1	25	0.3790525	0.0000052	-1.3437004	0.0010102	9
1	26	0.3790508	0.0000050	-1.343 3692	0.0010094	11
1	27	0.3790530	0.0000074	-1.3437617	0.0013817	12
1	28	0.3790519	0.0000016	-1.3435724	0.0003713	12
1	29	0.3790519	0.0000010	-1.3435632	0.0002717	9
1	30	0.3790517	0.0000016	-1.343 5091	0.0004340	9
1	31	0.3790518	0.0000011	-1.3435230	0.0003276	8
1	32	0.3790514	0.0000017	-1.3434149	0.0005073	4
1	33	0.3790521	0.0000016	-1.3436098	0.0004159	9
1	34	0.3790525	0.0000028	-1.3437270	0.0007447	11
1	35	0.3790518	0.0000003	-1.343 5417	0.0000956	10
1	36	0.3790519	0.0000003	-1.3435722	0.0001233	10
1	37	0.3790517	0.0000011	-1.3434730	0.0004568	8
1	38	0.3790518	0.0000009	-1.3435048	0.0003501	9
1	39	0.3790521	0.0000001	-1.3436392	0.0000515	2 x
2	28	0.3790525	-	-1.3437307	-	1 x
2	29	0.3790520	-	-1.3435885	-	1 x
2	30	0.3790518	0.0000006	-1.3435431	0.0001628	2 x
2	31	0.3790518	0.0000005	-1.3435300	0.0001315	3 x
2	32	0.3790513	0.0000016	-1.3432041	0.0010873	3 x
2	33	0.3790515	0.0000007	-1.3433885	0.0004434	4
2	34	0.3790519	0.0000003	-1.3435503	0.0000824	5
2	35	0.3790521	0.0000004	-1.3436142	0.0001314	5
2	36	0.3790519	0.0000006	-1.3435607	0.0001972	6
2	37	0.3790520	0.0000001	-1.343 5822	0.0000276	7
2	38	0.3790520	0.0000001	-1.3435845	0.0000264	6
2	39	0.3790521	0.0000002	-1.3436174	0.0000616	4

For second-order approximants ($K=2$), we construct eight distinct approximants for each value of N. A summary of the results of this process is shown in table 4.

The statistical procedure used to combine the results gives
$x_{c}=0.379052 \pm 0.000001 \quad \gamma=1.3435 \pm 0.0003 \quad(K=1)$
$x_{\mathrm{c}}=0.3790520 \pm 0.0000005 \quad \gamma=1.3436 \pm 0.00015 \quad(K=2)$.
These results provide abundant support, if support is still needed, for the value $\gamma=1.34375$ obtained by Nienhuis $(1982,1984)$. To refine the estimate of the critical point, linear regression is used. There is a strong correlation between estimates of the critical point and critical exponent. This is quantified by linear regression, and in this way the biased estimates (biased at $\gamma=43 / 32$) are obtained.

We find

$$
\begin{array}{ll}
x_{\mathrm{c}}=0.3790524 \pm 0.0000005 & (K=1) \\
x_{\mathrm{c}}=0.3790525 \pm 0.0000005 & (K=2) .
\end{array}
$$

These are in excellent agreement with previous estimates based on the 56 term polygon series (Guttmann and Enting 1988), $x_{\mathrm{c}}=0.37905228 \pm 0.00000014$.

For the honeycomb lattice, the 'connective constant' $=1 / x_{\mathrm{c}}$ is known exactly (Nienhuis 1982, 1984), and is $\sqrt{2+\sqrt{2}}$, which satisfies a simple quadratic equation in x_{c}^{2}. A feature of Maple (Version 5) is a clever algorithm for seeking polynomials with integer coefficients that have a given root. Attempting to find a quartic polynomial that gave as a root the biased value of x_{c} quoted above, we found the bcst solution was also a polynomial quadratic in x_{c}^{2}. It was

$$
581 x^{4}+7 x^{2}-13=0
$$

The root is $x_{c}=0.37905227 \ldots$. While we consider it would be fortuitous if this were the true value of the critical point, it nevertheless provides a useful mnemonic.

Another analysis we were able to carry out with this long series was a study of amplitudes of the leading term and the correction terms. As previously discussed for self-avoiding polygons (Guttmann and Enting 1988), we have found no evidence for any non-analytic correction-to-scaling term other than that suggested by Nienhuis, with a 'correction' exponent of $\Delta=1.5$. In the case of the polygon generating function this 'folds into' the additive analytic term. However, for the SAW series, it gives rise to a non-analytic correction term. Furthermore, there is another singularity on the negative real axis, at $x=-x_{c}$, as shown by Guttmann and Whittington (1978).

Thus we expect the generating function for walks to behave like

$$
\begin{align*}
C(x)=\Sigma c_{n} x^{n} & \sim A(x)(1-\mu x)^{-43 / 32}\left[1+B(x)(1-\mu x)^{3 / 2}+\cdots\right] \\
& +D(x)(1+\mu x)^{+1 / 2} . \tag{5.1}
\end{align*}
$$

The exponent for the singularity on the negative real axis reflects the fact that this term is expected to behave as the energy, and hence to have exponent $1-\alpha$, where $\alpha=\frac{1}{2}$. From the above, it follows that the asymptotic form of the coefficients, c_{n}, behaves like

$$
\begin{equation*}
c_{n} \sim \mu^{n}\left[a_{1} n^{11 / 32}+a_{2} n^{-21 / 32}+b_{1} n^{-37 / 32}+(-1)^{n} d_{1} n^{-3 / 2}+(-1)^{n} d_{2} n^{-5 / 2}\right] . \tag{5.2}
\end{equation*}
$$

Table 5. Sequences of amplitude estimates. Refer to equation (5.2).

n	d_{2}	d_{1}	b_{1}	a_{2}	a_{1}
29	0.0639	-0.1878	-0.1999	0.5584	1.17700
30	0.0666	-0.1879	-0.2022	0.5590	1.17699
31	0.0715	-0.1881	-0.1980	0.5579	1.17700
32	0.0738	-0.1882	-0.1999	0.5584	1.17700
33	0.0781	-0.1883	-0.1963	0.5574	1.17701
34	0.0800	-0.1884	-0.1979	0.5578	1.77700
35	0.0838	-0.1885	-0.1947	0.5570	1.77701
36	0.0855	-0.1885	-0.1960	0.5573	1.77701
37	0.0890	-0.1886	-0.1932	0.5566	1.77701
38	0.0904	-0.1887	-0.1943	0.5569	1.77701
39	0.0936	-0.1888	-0.1919	0.5563	1.77702

The five amplitudes, $a_{1}, a_{2}, b_{1}, d_{1}$ and d_{2} come from the leading singularity (giving rise to a_{1} and a_{2}), the correction-to-scaling term (giving rise to b_{1}) and the term on the negative real axis (giving rise to d_{1} and d_{2}). A small program written in Mathematica was used to fit successive quintuples of coefficients, $c_{n-4}, c_{n-3}, c_{n-2}, c_{n-1}$ and c_{n} for $n=6,7,8, \ldots, 39$. The results are given in table 5.

With the possible exception of the sequence $\left\{d_{2}\right\}$, the sequences for the various amplitudes appear to be converging. Various other values for the exponents were also tried, including a square-root correction-to-scaling term. In all cases the convergence was dramatically worsened by such changes. Indeed, with a square-root correction-toscaling exponent, a number of sequences appeared to diverge rather than converge. However, we have assumed above that the sub-leading term of the singularity on the negative real axis is analytic. If we allow this singularity to be a square root singularity, so that the last term in (5.2) above becomes $\mu^{n}(-1)^{n} d_{2} n^{-2}$ then the results converge even faster, as shown in table 6.

Table 6. Sequences of amplitude estimates, with the exponent associated with d_{2} changed from $-\frac{5}{2}$ to -2 . Refer to equation (5.2).

n	d_{2}	d_{1}	b_{1}	a_{2}	a_{1}
29	0.0246	-0.1902	-0.2004	0.5585	1.17699
30	0.0252	-0.1903	-0.2017	0.5589	1.17699
31	0.0266	-0.1906	-0.1985	0.5580	1.17700
32	0.0270	-0.1906	-0.1994	0.5583	1.17700
33	0.0281	-0.1908	-0.1969	0.5576	1.17700
34	0.0283	-0.1909	-0.1974	0.5577	1.17700
35	0.0292	-0.1910	-0.1952	0.5571	1.17701
36	0.0293	-0.1910	-0.1955	0.5572	1.17701
37	0.0301	-0.1912	-0.1937	0.5568	1.17701
38	0.0301	-0.1912	-0.1939	0.5568	1.17701
39	0.0308	-0.1912	-0.1923	0.5564	1.17702

From these tables we estimate $a_{1} \approx 1.1771, a_{2} \approx 0.554, b_{1} \approx-0.19, d_{1} \approx-0.19$, where errors are expected to be confined to the last quoted digit in each case. Repeating the above calculations with a critical point shifted by twice the confidence limit quoted does not change these amplitude estimates.

This then completes our numerical study of the generating function for selfavoiding walks.

Acknowledgments

One of us (ARC) would like to thank the A O Capell, Wyselaskie and Daniel Curdie scholarships. We would like to acknowledge the support of ACCI and The University of Melbourne for the provision of the computers on which these calculations were performed. Mr Glenn Wightwick of IBM (Australia) provided valuable help in running large jobs on the IBM 3090 , and we wish to express our thanks for this assistance. This work was supported by the Australian Research Council.

References

Enting I G 1980 J. Phys. A: Math Gen 133713
Enting I G and Guttmann A J 1980 J. Phys. A: Math. Gen. 131043

- 1985 J. Phys. A: Math Gen. 181007
- 1989 J. Phys. A: Math Ger. 221371
-1990 J. Stat. Phys. 58475
- 1992 J. Phys. A: Math. Gen. 252791

Guttmann A J 1987 J. Phys. A: Math. Gen. 201839

- 1989 Phase Transitions and Critical Phenomena vol 13, ed C Domb and J Lebowitz (New York: Academic)
Guttmann A J and Enting I G 1988 J. Phys. A: Math. Gen. 21 L165
Guttmann A J and Wang J S 1991 J. Phys. A: Math. Gen. 243107
Guttmann A J and Whittington S G 1978 J. Phys. A: Math. Gen. 11721
MacDonald D, Hunter D L, Kelly K and Jan N 1992 J. Phys. A: Math. Gen. 251429
Masand B, Wilensky U, Maffar J P and Redner S 1992 J. Phys. A: Math. Gen. 25 L365
Nienhuis B 1982 Phys. Rev. Lett 491062
Nienhuis B 1984 J. Stat. Phys. 34731
Sykes M F, Guttmann A J, Roberts P D and Watts M G 1972 J. Phys. A: Math Gen. 5653

